
meeting

ntop Users Group Meeting

PF_RING Tutorial

Alfredo Cardigliano <cardigliano@ntop.org>

mailto:cardigliano@ntop.org

Arnhem, Netherlands • October 17, 2016

meeting

• Introduction

• Installation

• Configuration

• Tuning

• Use cases

Overview

Arnhem, Netherlands • October 17, 2016

meeting

• Open source packet processing framework for Linux.

• Originally (2003) designed to accelerate packet
capture on commodity hardware, using patched
drivers and in-kernel filtering.

• Today it supports almost all Intel adapters with kernel-
bypass zero-copy drivers and almost all FPGAs
capture adapters.

PF_RING

Arnhem, Netherlands • October 17, 2016

meeting

PF_RING's Main Features

• PF_RING consists of:

• Kernel module (pf_ring.ko)

• Userspace library (libpfring)

• Userspace modules
implementing multi-vendor
support

• Patched libpcap for legacy
applications

PF_RING.ko

libpfring

Kernel

Userspace

PF_RING App

NIC

PCAP-Over-PF_RING

modules

PCAP App

Arnhem, Netherlands • October 17, 2016

meeting

PF_RING.ko

PF_RING lib

• Standard kernel drivers, NAPI polling.

• 1-copy by the NIC into kernel buffers (DMA).

• 1-copy by the PF_RING kernel module into memory-map’ed memory.

Standard Drivers

Kernel

Userspace

App

mmap()

1-copy

NIC

Arnhem, Netherlands • October 17, 2016

meeting

PF_RING ZC

• Userspace drivers for Intel cards, kernel is bypassed.

• 1-copy by the NIC into userspace memory (DMA).

• Packets are read directly by the application in zero-copy.

PF_RING ZC Drivers

NIC

Kernel

Userspace

App

DMA

0-copy

zc:eth1

Arnhem, Netherlands • October 17, 2016

meeting

• PF_RING ZC is not just a zero-copy driver, it provides
a flexible API for creating full zero-copy processing
patterns using 3 simple building blocks:

‣ Queue
‣ Hw Device Queue

‣ Sw SPSC Queue

‣ Pool: DMA buffers resource.

‣ Worker: execution unit able to aggregate traffic
from M ingress queues and distribute it to N
generic egress queues using custom functions.

PF_RING ZC API

Worker

Pool

Arnhem, Netherlands • October 17, 2016

meeting

PF_RING ZC API - zbalance Example

1/10G

Core 0 Core 1 Core 2 Core 3

 Linux

1/10G

PF_RING

ZC

Consumer
Thread 1

PF_RING

ZC

Consumer
Thread 2

PF_RING

ZC

Sw
Distribution

PF_RING

ZC

Consumer
Thread 0

PoolPool Pool

Worker

Arnhem, Netherlands • October 17, 2016

meeting

• Code for aggregation and load-balancing using ZC:

PF_RING ZC API - zbalance code

1 zc = pfring_zc_create_cluster(ID, MTU, MAX_BUFFERS, NULL);

2 for (i = 0; i < num_devices; i++)

3 inzq[i] = pfring_zc_open_device(zc, devices[i], rx_only);

4 for (i = 0; i < num_slaves; i++)

5 outzq[i] = pfring_zc_create_queue(zc, QUEUE_LEN);

6 zw = pfring_zc_run_balancer(inzq, outzq, num_devices,

 num_slaves, NULL, NULL, !wait_for_packet, core_id);

Arnhem, Netherlands • October 17, 2016

meeting

• Currently PF_RING natively supports the following vendors (1/10/40/100 Gbit)

• PF_RING-based applications transparently select the module by means of the interface name.
Example:

• pfcount -i eth1 [Vanilla Linux adapter]

• pfcount -i zc:eth1 [Intel ZC drivers]

• pfcount -i nt:1 [Napatech]

• pfcount -i myri:1 [Myricom]

• pfcount -i exanic:0 [Exablaze]

FPGAs Support

Arnhem, Netherlands • October 17, 2016

meeting

Many modules, single API.

 Kernel

ZC
Intel NIC

Standard
Drivers

Standard NIC
Napatech

Card

 ring buffer
(packet copy)

NAPI

Napatech modZC mod

libpfring

pf_ring mod

Napatech lib

App

0-copy (DMA) FPGA

App App

zc:eth1eth0 nt:0

ZC
Drivers

pf_ring.ko

Stack mod

App

stack:eth2

Network
Stack

Myricom
Card

Myricom mod

SNF lib

FPGA

App

myri:0

App

n2disk mod

timeline:/storage

Index
PCAP

Arnhem, Netherlands • October 17, 2016

meeting

Overview

• Introduction

• Installation

• Configuration

• Tuning

• Use cases

Arnhem, Netherlands • October 17, 2016

meeting

• Two options for installing PF_RING:

• Source Code (GitHub)

• Packages

‣ Stable

‣ Dev (aka “nightly builds”)

Installation

Arnhem, Netherlands • October 17, 2016

meeting

• Download

git clone https://github.com/ntop/PF_RING.git

• Installation:

cd PF_RING/kernel

make && make install

cd ../userland

make && make install

• ZC drivers installation (optional):

cd PF_RING/drivers/intel/<model>/<model>-<version>-zc/src

make && make install

• Support for FPGAs (Napatech, Myricom, etc) is automatically enabled if drivers are installed.

Installation - Source Code

Arnhem, Netherlands • October 17, 2016

meeting

• CentOS/Debian/Ubuntu stable/devel repositories at http://packages.ntop.org

• Installation:

wget http://apt.ntop.org/16.04/all/apt-ntop.deb

dpkg -i apt-ntop.deb

apt-get clean all

apt-get update

apt-get install pfring

• ZC drivers installation (optional):

apt-get install pfring-drivers-zc-dkms

• Support for FPGAs (Napatech, Myricom, etc) is already there.

Installation - Packages

http://packages.ntop.org

Arnhem, Netherlands • October 17, 2016

meeting

Overview

• Introduction

• Installation

• Configuration

• Optimisation

• Use cases

Arnhem, Netherlands • October 17, 2016

meeting

Loading PF_RING

• If you compiled from source code:

cd PF_RING/kernel

insmod ./pf_ring.ko

• If you are using packages:

tree /etc/pf_ring/

|-- pf_ring.conf

`-- pf_ring.start

/etc/init.d/pf_ring start

Arnhem, Netherlands • October 17, 2016

meeting

• ZC drivers are available for almost all Intel cards
based on e1000e, igb, ixgbe, i40e, fm10k

• ZC needs hugepages for memory allocation, the
pf_ring init script takes care of reserving them.

• A ZC interface acts as a standard interface (e.g. you
can set an IP on ethX) until you open it using the “zc:”
prefix (e.g. zc:ethX).

Loading ZC Drivers

Arnhem, Netherlands • October 17, 2016

meeting

• If you compiled from source code:

cd PF_RING/drivers/intel/<model>/<model>-<version>-zc/src

./load_driver.sh

• In essence the script loads hugepages and dependencies and load the module with:

insmod <model>.ko RSS=1,1 [other options]

• You can check that the ZC driver is actually running with:

cat /proc/net/pf_ring/dev/eth1/info | grep ZC

Polling Mode: ZC/NAPI

Loading ZC Drivers

Arnhem, Netherlands • October 17, 2016

meeting

• If you are using packages (ixgbe driver in this example):

tree /etc/pf_ring/

|-- hugepages.conf

|-- pf_ring.conf

|-- pf_ring.start

`-- zc

 `-- ixgbe

 |-- ixgbe.conf

 `-- ixgbe.start

• Where:

cat /etc/pf_ring/hugepages.conf

node=0 hugepagenumber=1024

cat /etc/pf_ring/zc/ixgbe/ixgbe.conf

RSS=1,1

Loading ZC Drivers

Arnhem, Netherlands • October 17, 2016

meeting

RSS

Network Card

Core 0 Core 1 Core 2 Core 3

Queue 0 Queue 1 Queue 2 Queue 3

CPU

• RSS distributes the load across the specified number of RX queues
based on an hash function which is IP-based (or IP/Port-based in case of
TCP)

Arnhem, Netherlands • October 17, 2016

meeting

RSS

• Set the number of RSS queues using the insmod option or ethtool:

ethtool --set-channels eth1 combined 4
cat /proc/net/pf_ring/dev/eth1/info | grep Queues
TX Queues: 4
RX Queues: 4

• In order to open a specific interface queue, you have to specify the
queue ID using the "@<ID>" suffix.

tcpdump -i zc:eth1@0

Note: when using ZC, “zc:eth1” is the same as “zc:eth1@0”! This happens
because ZC is a kernel-bypass technology, there is no abstraction
(queues aggregation) provided by the kernel.

Arnhem, Netherlands • October 17, 2016

meeting

Indirection Table

• Destination queue is selected in combination with an
indirection table:

queue = indirection_table[rss_hash(packet)]

• It is possible to configure the indirection table using
ethtool by simply applying weights to each RX queue.

Arnhem, Netherlands • October 17, 2016

meeting

Indirection Table

ethtool --set-channels eth1 combined 4
ethtool -x eth1
RX flow hash indirection table for eth1 with 4 RX ring(s):
 0: 0 1 2 3 0 1 2 3
 8: 0 1 2 3 0 1 2 3
 16: 0 1 2 3 0 1 2 3
 24: 0 1 2 3 0 1 2 3
 32: 0 1 2 3 0 1 2 3
 40: 0 1 2 3 0 1 2 3
 48: 0 1 2 3 0 1 2 3
 56: 0 1 2 3 0 1 2 3
 64: 0 1 2 3 0 1 2 3
 72: 0 1 2 3 0 1 2 3
 80: 0 1 2 3 0 1 2 3
 88: 0 1 2 3 0 1 2 3
 96: 0 1 2 3 0 1 2 3
 104: 0 1 2 3 0 1 2 3
 112: 0 1 2 3 0 1 2 3
 120: 0 1 2 3 0 1 2 3

destination
queue ID

hash

Arnhem, Netherlands • October 17, 2016

meeting

Indirection Table

ethtool -X eth1 weight 1 0 0 0
ethtool -x eth1
RX flow hash indirection table for eth1 with 4 RX ring(s):
 0: 0 0 0 0 0 0 0 0
 8: 0 0 0 0 0 0 0 0
 16: 0 0 0 0 0 0 0 0
 24: 0 0 0 0 0 0 0 0
 32: 0 0 0 0 0 0 0 0
 40: 0 0 0 0 0 0 0 0
 48: 0 0 0 0 0 0 0 0
 56: 0 0 0 0 0 0 0 0
 64: 0 0 0 0 0 0 0 0
 72: 0 0 0 0 0 0 0 0
 80: 0 0 0 0 0 0 0 0
 88: 0 0 0 0 0 0 0 0
 96: 0 0 0 0 0 0 0 0
 104: 0 0 0 0 0 0 0 0
 112: 0 0 0 0 0 0 0 0
 120: 0 0 0 0 0 0 0 0

hash

destination
queue ID

Arnhem, Netherlands • October 17, 2016

meeting

Overview

• Introduction

• Installation

• Configuration

• Tuning

• Use cases

Arnhem, Netherlands • October 17, 2016

meeting

Xeon Architecture

PCIe PCIe

Arnhem, Netherlands • October 17, 2016

meeting

PCIe PCIe

QPI

• QPI (Quick Path Interconnect) is the bus that interconnects the
nodes of a NUMA system.

• QPI is used for moving data between nodes when accessing remote
memory or PCIe devices. It also carries cache coherency traffic.

Arnhem, Netherlands • October 17, 2016

meeting

PCIe PCIe

Memory

• Each CPU has its local memory directly attached.

• Accessing remote memory is slow as data flows through
the QPI, which has lower bandwidth and adds latency.

E5-2687WV4

 9.6 GT/s QPI

76.8 GB/s RAM DDR4 2400

QPI latency: hundreds of nanosec

Example:

8.0 GT/s QPI - bandwidth 32 GiB/s ~32 GB/s

Arnhem, Netherlands • October 17, 2016

meeting

PCIe PCIe

PCIe

• Each node has its dedicated PCIe lanes.

• Plug the Network Card (and the RAID Controller) to
the right slot reading the motherboard manual.

Arnhem, Netherlands • October 17, 2016

meeting

PCIe PCIe

Memory Channels

• Multi-channel memory increases data transfer rate between memory and
memory controller. You can use n2membenchmark as benchmark tool.

• Check how many channels your CPU supports and use at least as many
memory modules as the number of channels (check dmidecode).

Arnhem, Netherlands • October 17, 2016

meeting

PCIe PCIe

CPU Cores

• CPU pinning of a process/thread to a core is important to isolate
processing and improve performance.

• In most cases dedicating a physical core (pay attention to hyper-
threading) to each thread is the best choice for optimal performance.

Arnhem, Netherlands • October 17, 2016

meeting

Core Affinity

• All our applications natively support CPU pinning, e.g.:

nprobe -h | grep affinity
[--cpu-affinity|-4] <CPU/Core Id> | Binds
this process to the specified CPU/Core

• When not supported, you can use external tools:

taskset -c 1 tcpdump -i eth1

Arnhem, Netherlands • October 17, 2016

meeting

NUMA Affinity

• You can check your NUMA-related hw configuration with:

• lstopo

• numactl --hardware

• Configuring CPU pinning, usually the application allocates memory
to the correct NUMA node, if this is not the case you can use
external tools:

numactl --membind=0 --cpunodebind=0 tcpdump -i zc:eth1

• You can check your QPI bandwidth with:

numactl --membind=0 --cpunodebind=1 n2membenchmark

Arnhem, Netherlands • October 17, 2016

meeting

PF_RING ZC Driver NUMA Affinity

• PF_RING ZC drivers allocate data structures (RX/TX
ring) in memory, setting NUMA affinity is important.
You can do that at insmod:

insmod <model>.ko RSS=1,1,1,1 numa_cpu_affinity=0,0,8,8

• Or if you are using packages:

cat /etc/pf_ring/zc/ixgbe/ixgbe.conf

RSS=1,1,1,1 numa_cpu_affinity=0,0,8,8

Arnhem, Netherlands • October 17, 2016

meeting

Traffic Recording - Wrong Configuration

PCIe PCIe

1. NIC to memory

2. Processing in memory

3. Memory to Storage

Arnhem, Netherlands • October 17, 2016

meeting

Traffic Recording - Correct Configuration

PCIe PCIe

Arnhem, Netherlands • October 17, 2016

meeting

Overview

• Introduction

• Installation

• Configuration

• Tuning

• Use cases

Arnhem, Netherlands • October 17, 2016

meeting

RSS Load Balancing

Core 0 Core 1 Core 2 Core 3

 Linux

PF_RING

ZC

Consumer
Thread 1

PF_RING

ZC

Consumer
Thread 2

PF_RING

ZC

Consumer
Thread 3

PF_RING

ZC

Consumer
Thread 0

Network Card

Arnhem, Netherlands • October 17, 2016

meeting

RSS: When it can be used

• Flow-based traffic analysis (multi-threaded or multi-process)
and all the applications where Divide and Conquer strategy
is applicable.

• Examples:

• nProbe (Netflow probe)

• nProbe Cento

• Suricata

• Bro

Arnhem, Netherlands • October 17, 2016

meeting

RSS: nProbe Example

• nProbe instances example with 4 RSS queues:

nprobe -i zc:eth1@0 --cpu-affinity 0 [other options]

nprobe -i zc:eth1@1 --cpu-affinity 1 [other options]

nprobe -i zc:eth1@2 --cpu-affinity 2 [other options]

nprobe -i zc:eth1@3 --cpu-affinity 3 [other options]

Arnhem, Netherlands • October 17, 2016

meeting

RSS: Bro Example

• Bro node.cfg example with 8 RSS queues:

[worker-1]

type=worker

host=10.0.0.1

interface=zc:eth1

lb_method=pf_ring

lb_procs=8

pin_cpus=0,1,2,3,4,5,6,7

This is expanded into zc:eth1@0 .. zc:eth1@7

Arnhem, Netherlands • October 17, 2016

meeting

RSS: When it can NOT be used

• Applications where packets order has to be preserved
(also across flows), especially if there is no hw
timestamping.

• For example in n2disk (traffic recording) we have to
keep the original order for packets dumped on disk.

Arnhem, Netherlands • October 17, 2016

meeting

ZC Load Balancing (zbalance_ipc)

1/10G

Core 0 Core 1 Core 2 Core 3

 Linux

1/10G

PF_RING

ZC

Consumer
App B T2

PF_RING

ZC

Consumer
App A

PF_RING

ZC

Sw
Distribution

PF_RING

ZC

Consumer
App B T0

Worker

Arnhem, Netherlands • October 17, 2016

meeting

ZC Load Balancing: When it is useful

• When RSS is not available or not flexible enough (with
ZC you can build your distribution function/hash)

• When you need to send the same traffic to multiple
applications (fan-out) while using zero-copy

• When you need to aggregate from multiple ports and
then distribute

Arnhem, Netherlands • October 17, 2016

meeting

ZC Load Balancing - example

• zbalance_ipc is an example of multi-process load
balancing application:

zbalance_ipc -i zc:eth1,zc:eth2 -c 99 -n 1,2 -m 1 -g 0

• Consumer applications example:

taskset -c 1 tcpdump -i zc:99@0

nprobe -i zc:99@1 --cpu-affinity 2 [other options]

nprobe -i zc:99@2 --cpu-affinity 3 [other options]

Ingress Interfaces ZC ID Egress
Queues

Hash
Type

CPU
Core

Arnhem, Netherlands • October 17, 2016

meeting

ZC Load Balancing and Bro

• Bro node.cfg example with 8 ZC queues:

[worker-1]

type=worker

host=10.0.0.1

interface=zc:99

lb_method=pf_ring

lb_procs=8

pin_cpus=0,1,2,3,4,5,6,7

This is expanded into zc:99@0 .. zc:99@7

Arnhem, Netherlands • October 17, 2016

meeting

Other processing patterns

 Linux

Core 0 Core 1 Core 2 Core 3

PF_RING
ZC

App B  
(e.g. IPS)

PF_RING
ZC

App A
(e.g. DDoS)

PF_RING

ZC

Packet 
Dispatcher

1/10G

PF_RING

ZC

Packet
Forwarder

1/10G

• Using the ZC API you can create any multithreaded or
multi-process processing pattern. Pipeline example:

Arnhem, Netherlands • October 17, 2016

meeting

ZC & Virtualisation: PCI Passthrough

• Any hypervisor is supported: KVM, VMWare (Direct I/
O), Xen, etc.

PF_RING ZC

NIC

Host

App

DMA
0-copy

zc:eth1

NIC

Kernel

Userspace

VM

PCI Passthrough

Arnhem, Netherlands • October 17, 2016

meeting

ZC & Virtualisation: Host to VM (KVM)

Core 0 Core 1 Core 2 Core 3

KVM

PF_RING
ZC

App
(e.g. IPS)

PF_RING

ZC

Packet 
Forwarder

1/10G

PF_RING

ZC

Packet
Forwarder

1/10G

(Host) $ zpipeline_ipc -i zc:eth2,0 -o zc:eth3,1 -n 2 -c
99 -r 0 -t 2 -Q /tmp/qmp0

(VM) $ zbounce_ipc -c 99 -i 0 -o 1 -u

Arnhem, Netherlands • October 17, 2016

meeting

Stack Injection

• ZC is a Kernel-Bypass technology: what if we want to
forward some traffic to the Linux Stack?

Network
Stack

PF_RING ZC

Kernel

Userspace

App

DMA

0-copy

stack:eth1 zc:eth1

NIC

pf
rin

g_
se

nd
()

pf
rin

g_
re

cv
()

NIC

Arnhem, Netherlands • October 17, 2016

meeting

Thank you!

